	Gurukul Coaching Classes	
Std: SSC (E.M)	Weekly Test [MODEL ANSWER] Subject: Mathematics I	Time: 2Hrs
Date : 12/May/2019	CH-1	Max Marks: 40
Q.1 Solve the following qu		5
1) Ans. Ratio of 138 to 16	$l = \frac{138}{161}$	
$=\frac{23 \times 6}{23 \times 7}=\frac{6}{7}$		
= 6:7 2) Ans.	114	
Katio of 114 to 13	$3 = \frac{114}{133}$	
$=\frac{19 \text{ x } 6}{19 \text{ x } 7} = \frac{6}{7}$		
$19 \ge 7$ 7 = 6 : 7		
	r r	
3) Ans. Ratio of radius to o	d	
$=\frac{\mathbf{r}}{2\mathbf{r}}=\frac{1}{2}$		
= 1 : 2	20	
4) Ans. Ratio of 38 to 57 =	<u>57</u>	
$=\frac{19 \text{ x } 2}{19 \text{ x } 3}=$	2	
	3	
= 2:3	52	
5) Ans. Ratio of 52 to 78 =	78	
$=\frac{26 \text{ x } 2}{26 \text{ x } 3}=$		
	3	
= 2 : 3		
Q.2 Solve the following que 1 Ang $\sqrt{247}$ $\sqrt{274}$	estions (9th std)	4
1) Ans. $\sqrt{247}$, $\sqrt{274}$		
247 < 274		
$\sqrt{247} < \sqrt{274}$		
2) Ans. $-\frac{5}{9}\sqrt{45}$		
$-\frac{5}{9}\sqrt{3\times3\times5}$		
$-\frac{5}{9} \times 3\sqrt{5}$		
$-\frac{5}{3}\sqrt{5}$		
Q.3 Choose the correct alt	ernative answer for each of the following questions:	6
1) Ans. (a) (6, 0)		

Observing carefully the set of values, Coordinate pair (6, 0) is common in both Therefore solution of system of linear equations will be (6, 0)

2) Ans. (b)
$$(10x + y) + (10y + x) = 88$$

Given that x and y are tens and unit's place digits of a two digit number. Number = 10x + yReversible number = 10y + xNow, Sum of a two digit number and its reversible number is 88 (10x + y) + (10y + x) = 88

3) Ans. (a)

Given that one girl alone finishes the work in x days

1 day work of a girl = $\frac{1}{x}$

1 day work of 8 girls = $8\left(\frac{1}{x}\right)$

And one boy alone finishes the work in y days

1 day work of a boy=
$$\frac{1}{y}$$

1 day work of 12 boys = $12\left(\frac{1}{y}\right)$

Therefore, condition 8 girls and 12 boys can finish work in 10 days is expressible as

$$8\left(\frac{1}{x}\right) + 12\left(\frac{1}{y}\right) = \frac{1}{10}$$

condition 6 girls and 8 boys can finish work in 14 days is expressible as Similarly,

$$6\left(\frac{1}{x}\right) + 8\left(\frac{1}{y}\right) = \frac{1}{14}$$

Thus, the equations are $8\left(\frac{1}{x}\right) + 12\left(\frac{1}{y}\right) = \frac{1}{10}; 6\left(\frac{1}{x}\right) + 8\left(\frac{1}{y}\right) = \frac{1}{14}$

4) Ans. (c) 1

As -2 is y- intercept. Therefore, lines meets y axis at (0, -2)(0, -2) are one of the solution of equation 2x + ky + 14 = 0Place x = 0 and y = -2 in equation 2x + ky + 14 = 02(0) + k(-2) + 14 = 0-2k + 14 = 0-2k = -14k = 7

5) Ans. (d) 9, 16

Assume the two numbers be 'x' and 'y'. Now, Sum of two numbers is 25 $x + y = 25 \dots$ (I) Their difference is 7 $x - y = 7 \dots$ (II) Adding (I) and (II), we get 2x = 32x = 16Place x = 16 in equation (I) x + y = 25 16 + y = 25y = 25 - 16 y = 9 Thus, the numbers are 9 and 16

6) Ans. (b) x + y = 50; x + 2y = 75

Given that 'x' be the number of Re1 coins and 'y' be the number of Re 2 coins The total number of coins is 50. x + y = 50And the coins amount to Rs. 75 1(x) + 2(y) = 75x + 2y = 75Therefore, equations so formed are x + y = 50; x + 2y = 75

Q.4 Solve the following questions (ANY FIVE)

Here the equations are $2x - 3y = 9 \dots (I)$ $2x + y = 13 \dots (II)$

1) Ans.

As the sign of '2x' in the equations (I) and (II) is same, proceed as subtracting equation (I) and (II)

9 2x - 3y =2x + y =13 3.55 = -4y = -4*y* = -4) y = 1 Place y = 1 in equation (I) and obtain the value of 'x' 2x - 3x1 = 92x - 3 = 92x = 9 + 32x = 12 $x = \frac{12}{2}$ x=6 \therefore Solution is (x, y) = (6, 1)

10

2) Ans. Here the equations are $5m - 3n = 19 \dots (I)$ m - 6n = -7 ... (II)Both the variables are having different coefficients, first make the coefficient same. Multiply equation (II) by '5' as 5m - 30n = -35...(III)As the sign of '5m' in both the equations is same, proceed as subtracting equation (II) and (III) 5m - 3n = 195m - 30n = -35m = 2Place m = 2 in equation (I) and obtain the value of 'n' 5 x 2 - 3n = 1910 - 3n = 19-3n = 19 - 10- 3n = 9 $n = \frac{9}{(-3)}$ n = (-3) \therefore Solution is (m, n) = (2, -3)**3**) Ans. A = $\begin{vmatrix} 5 & 3 \\ 7 & 9 \end{vmatrix}$ = $(5 \times 9) - (3 \times 7) = 45 - 21 = 24$ 4) Ans. N = $\begin{bmatrix} -8 & -3 \\ 2 & 4 \end{bmatrix}$ = $[(-8) \times (4)] - [(-3) \times 2)] = -32 - (-6)$ = -32 + 6 = -26 5) Ans. Let's add equations (I) and (II). 5x + 3y = 9

$$+2x - 3y = 12$$

7 x = 21

$$x = \frac{21}{7}$$
$$x = 3$$

Place x = 3 in equation (I).

$$5 \times \boxed{3} + 3y = 9$$

$$3y = 9 - \boxed{15}$$

$$3y = \boxed{-6}$$

$$y = \boxed{-6}$$

$$y = \boxed{-2}$$

$$\therefore \text{ Solution is } (x, y) = (\boxed{3}, \boxed{-2})$$

6) Ans. Here the equations are

 $x + 7y = 10 \dots (I)$

 $3x - 2y = 7 \dots (II)$

Both the variables are having different coefficients, first make the coefficient same. Multiply equation (I) by '3' as $3x + 21y = 30 \dots$ (III)

As the sign of '3x' in the equations (II) and (III) is same, proceed as subtracting equation (II) and (III)

3x + 21y =30 3x - 2y =7 + = - $\frac{23y = 23}{y = \frac{23}{25}}$ $y = \frac{23}{23}$ v = 1Place y = 1 in equation (I) and obtain the value of 'x' x + 7 x 1 = 10x + 7 = 10x = 10 - 7x = 3 \therefore Solution is (x, y) = (3, 1)**7**) Ans. $B = \begin{bmatrix} 2\sqrt{3} & 9 \\ 2 & 3\sqrt{3} \end{bmatrix} = [2\sqrt{3} \times 3\sqrt{3}] - [2 \times 9] = 18 - 18 = 0$

Q.5 Complete the following Activities (ANY THREE)

1) Ans. 3x + 2y = 29... (I) and 5x - y = 18... (II)

Let's solve the equations by eliminating y. Fill suitably the boxes below Multiplying equation (II) by 2.

$$\therefore 5x \times \boxed{2} - y \times \boxed{2} \quad 18 \times \boxed{2}$$

$$\therefore 10x - 2y = \boxed{36} \quad \dots \quad (III)$$
Let's add equations (I) and (III)
$$3x + 2y = 29$$

$$+ \boxed{10x} - \boxed{2y} = \boxed{36}$$

$$\boxed{13x} = \boxed{13} \qquad \therefore x = \boxed{1}$$
Substituting $x = 5$ in equation (I)
$$3x + 2y = 29$$

$$\therefore 3 \times \boxed{1} + 2y = 29$$

$$\therefore 3 \times \boxed{1} + 2y = 29$$

$$\therefore 2y = 29 - \boxed{3}$$

$$\therefore 2y = \boxed{26} \qquad \therefore y = \boxed{13}$$
 $(x, y) = (\boxed{1}, \boxed{13})$ is the solution.

2) Ans. Here the equations are

 $3a + 5b = 26 \dots (I)$ $a + 5b = 22 \dots (II)$

As the sign of '5b' in both the equations is same, proceed as subtracting equation (I) and (II)

$$3a + 5b = 26$$

$$a + 5b = 22$$

$$- - = -$$

$$\boxed{2a} = 4$$

$$a = \frac{4}{2}$$

$$a = 2$$

Place $a = 2$ in equation (I) and obtain the value of 'b'
 $3 \times 2 + 5b = 26$
 $6 + 5b = 26$
 $5b = 20$
 $b = \frac{20}{5}$
 $b = 4$
 \therefore Solution is $(a, b) = (2, 4)$

3) Ans. Given equations are 3x - 4y = 10 4x + 3y = 5 $D = \begin{vmatrix} 3 & -4 \\ 4 & 3 \end{vmatrix}$ $D_x = \begin{vmatrix} 10 & -4 \\ 5 & 3 \end{vmatrix}$ $D_y = \begin{vmatrix} 3 & 10 \\ 4 & 5 \end{vmatrix}$ = 3(3) - 4(-4) = 10(3) - 5(-4) = 3(5) - 4(10)= 9 + 16 = 30 + 20 = -25

Thus,

$$x = \frac{D_x}{D} \qquad y = \frac{D_y}{D}$$
$$= \frac{50}{25} \qquad \text{and} \qquad = \frac{\boxed{-25}}{25}$$
$$= \boxed{2} \qquad = -1$$

Therefore, (x, y) = (2, -1) is the solution.

4) Ans. Given equations are

$$\begin{aligned} 6x - 4y &= -12 \\ 8x - 3y &= -2 \\ D &= \begin{vmatrix} 6 & -4 \\ 8 & -3 \end{vmatrix} \qquad D_x = \begin{vmatrix} -12 & -4 \\ -2 & -3 \end{vmatrix} \qquad D_y = \begin{vmatrix} 6 & -12 \\ 8 & -2 \end{vmatrix} \\ = \frac{6(-3)}{8} - 8 = -12(-3) - (-2)(-4) = 6(-2) - 8(-12) \\ = -18 + 32 = \frac{36}{8} - 8 = -12 + 96 \\ = 14 = 28 = \frac{-12 + 96}{84} \\ x &= \frac{D_x}{D} \qquad y = \frac{D_y}{D} \\ = \frac{28}{14} \qquad \text{and} \qquad = \frac{84}{14} \\ = 2 = 6 \end{aligned}$$

Therefore, (x, y) = (2, 6) is the solution.

Q.6 Solve the following questions (ANY THREE)

1) Ans. Given equations are

$$2x + 3y = 2$$

$$x - \frac{y}{2} = \frac{1}{2} \text{ or } 2x - y = 1$$

$$D = \begin{vmatrix} 2 & 3 \\ 2 & -1 \end{vmatrix} \qquad D_x = \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} \qquad D_y = \begin{vmatrix} 2 & 2 \\ 2 & 1 \end{vmatrix}$$

$$= 2(-1) - 2(3) \qquad = 2(-1) - 1(3) \qquad = 2(1) - 2(2)$$

$$= -2 - 6 \qquad = -2 - 3 \qquad = 2 - 4$$

$$= -8 \qquad = -5 \qquad = -2$$

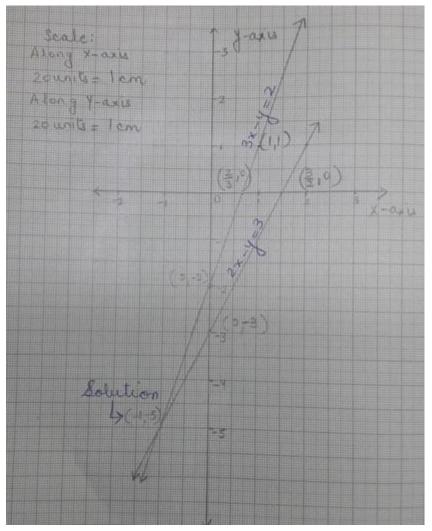
Thus,

$$x = \frac{D_x}{D} \qquad y = \frac{D_y}{D}$$
$$= \frac{(-5)}{(-8)} \qquad \text{and} \qquad = \frac{(-2)}{(-8)}$$
$$= \frac{5}{8} \qquad = \frac{1}{4}$$

$$=\frac{3}{8} \qquad =\frac{1}{4}$$

Therefore, $(x, y) = \left(\frac{5}{8}, \frac{1}{4}\right)$ is the solution.
$$\frac{4}{x} + \frac{5}{y} = 7; \ \frac{3}{x} + \frac{4}{y} = 5$$
$$4\left(\frac{1}{x}\right) + 5\left(\frac{1}{y}\right) = 7 \dots (I)$$
$$3\left(\frac{1}{x}\right) + 4\left(\frac{1}{y}\right) = 5 \dots (II)$$

Replacing $\left(\frac{1}{x}\right)$ by *m* and $\left(\frac{1}{y}\right)$ by *n* in equations (I) and (II), we get $4m + 5n = 7 \dots (III)$
$$3m + 4n = 5 \dots (IV)$$
On solving these equations we get $m = 3, n = -1$

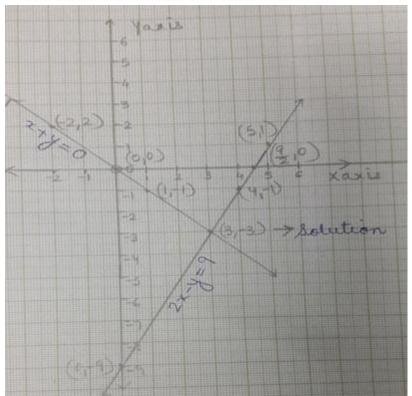

Now, $m = \frac{1}{x}$ $\therefore 3 = \frac{1}{x}$ $\therefore x = \frac{1}{3}$ $n = \frac{1}{y}$ $\therefore -1 = \frac{1}{y}$ $\therefore y = -1$

 \therefore Solution of given simultaneous equations is $(x, y) = (\frac{1}{3}, -1)$

3) Ans. To draw the graphs of equations 3x - y = 2; 2x - y = 3, obtain 4 ordered pairs for each equation as

$3x - y = 2 \rightarrow$	x	0	$\frac{2}{3}$	1	2
8	у	-2	0	1	4
63	(x, y)	(0, -2)	$(\frac{2}{3}, 0)$	(1, 1)	(2, 4)
	x	0	$\frac{3}{2}$	2	-1
$2x - y = 3 \rightarrow 0$	у	-3	0	1	-5
3	(x, y)	(0, -3)	$(\frac{3}{2}, 0)$	(2, 1)	(-1, - 5)

Now plotting the ordered pairs on graph paper as



Observe the intersecting point as (-1, -5). Therefore, (x, y) = (-1, -5) is the solution

4) Ans. To draw the graphs of equations x + y = 0; 2x - y = 9, obtain 4 ordered pairs for each equation as

x	0	1	-2	3
у	0	-1	2	-3
(x, y)	(0, 0)	(1, -1)	(-2, 2)	(3, -3)
x	0	$\frac{9}{2}$	5	4
у	-9	0	1	-1
(x, y)	(0, -9)	$(\frac{9}{2}, 0)$	(5, 1)	(4, -1)
	y (x, y) x y	y 0 (x, y) (0, 0) x 0 y -9	y 0 -1 (x, y) (0, 0) (1, -1) x 0 9/2 y -9 0	y 0 -1 2 (x, y) (0, 0) (1, -1) (-2, 2) x 0 9/2 5 y -9 0 1

Now plotting the ordered pairs on graph paper as

Observe the intersecting point as (3, -3). Therefore, (x, y) = (3, -3) is the solution 5) Ans. Assume that the greater number be 'x' and smaller number be 'y' From condition (I): Two numbers differ by 3

 $x - y = 3 \dots (I)$ From condition (II): The sum of twice the smaller number and thrice the greater number is 19 2y + 3x = 19

 $3x + 2y = 19 \dots (II)$ Solving (I) and (II) using Cramer's rule as

$D = \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix}$	$D_{x} = \begin{vmatrix} 3 & -1 \\ 19 & 2 \end{vmatrix}$	$D_y = \begin{vmatrix} 1 & 3 \\ 3 & 19 \end{vmatrix}$
=1(2)-3(-1)	=3(2)-19(-1)	=1(19)-3(3)
= 2+3	= 6 + 19	=19-9
= 5	= 25	=10

Thus,

$x = \frac{D_x}{D}$		$y = \frac{D_y}{D}$
$=\frac{25}{5}$	and	$=\frac{10}{5}$
= 5		= 2

Therefore, the numbers are 5 and 2.