Gurukul Academy

Weekly Test

Std: SSC **Subject: Geometry** Time: 2Hrs Date: 12/May/2019 Max Marks: 40 ch-1

Solve the following questions (9th std) (ANY FOUR) 0.1

1) Fill in the blanks: $\tan 30^{\circ}x \tan \circ = 1$

2) Fill in the blanks: $\sin 20^\circ = \cos \underline{\hspace{1cm}}^\circ$

3) Find the values of: $2 \sin 30^{\circ} + \cos 0^{\circ} + 3 \sin 90^{\circ}$

4) Write the answers to the following question with reference to figure below:

Write the intersection set of ray SP and ray ST.

- 5) Write the following statements in 'if-then' form: The opposite angles of a parallelogram are congruent.
- **6)** Write the answers to the following question with reference to figure below:

Write any two rays with common end point S.

Solve the following questions (9th std) (ANY TWO) **Q.2**

- 1) Diagonals of a parallelogram bisect each other.
- 2) U, V and A are three cities on a straight road. The distance between U and A is 215 km, between V and A is 140 km and between U and A is 75 km. Which of them is between the other two?
- 3) \square PQRS is a parallelogram. PQ = 3.5, PS = 5.3 \angle Q 50° then find the lengths of remaining sides and measures of remaining angles.

0.3 **Choose the correct alternative:**

1) Sides of two similar triangles are in the ration of 4:9. Areas of these triangles are in the ratio:

(c) 81:16 (a) 2:3 (b) 4:9 (d) 16:81

2) \triangle ABC and \triangle BDE are two equilateral triangles such that D is the mid-point of BC. The ratio of the areas of triangles ABC and BDE is:

(a) 2:1 (b) 1:2 (c) 4:1 (d) 1:4

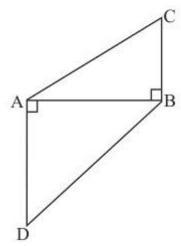
3) \triangle ABC is such that AB = 3 cm, BC = 2 cm and CA = 2.S cm. If \triangle DEF \sim \triangle ABC and EF = 4 cm, then perimeter of ΔDEF is

(b) 15 cm (c) 22.5 cm (d) 30 cm (a) 7.5 cm

4) Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m, the distance between their tops is

(a) 12 m (b) 14 m (c) 13 m (d) 11 m

- 5) In a \triangle ABC, AD is the bisector of \angle BAC. If AB = 6 cm, AC = 5 cm and BD = 3 cm, then DC =
 - (a) 11.3 cm
 - (b) 2.5 cm
 - (c) 3.5 cm
 - (d) None of these


Q.4 Solve the following questions (ANY TWO)

1) Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.

2) In figure given below BC \perp AB, AD \perp AB, B = 4, AD = 8, then find

5

 $\frac{A(\Delta ABC)}{A(\Delta ADB)}$

3) If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

Q.5 Complete the following Activities (ANY FOUR)

1) In $\triangle ABC$, ray BD bisects $\angle ABC$ and ray CE bisects $\angle ACB$. If seg AB \cong seg AC then prove that ED \parallel BC.

In ΔABC, ray BD bisects ∠ [Given]

B

AB

BC

DC

In ΔABC, ray CE bisector property of a triangle]
In ΔABC, ray CE bisects ∠ACB [Given]

AC

AE

BE

BE

Male

BE

Male

BE

Male

BE

Male

BE

Male

Mal

2) The ratio of corresponding sides of similar triangles is 3 : 5; then find the ratio of their areas.

Let Δ_1 and Δ_2 be two similar triangles with their corresponding sides s_1 and s_2 respectively.

$$\frac{s_1}{s_2} =$$
 [Given] 1

$$\Delta_1 \sim \Delta_2$$
 [Given]

$$\frac{\square}{A(\Delta_2)} = \frac{S_1^2}{\square}$$

[Theorem on areas of similar triangles]

$$\frac{A(\Delta_1)}{A(\Delta_2)} = \boxed{ [From 1]}$$

$$\therefore A(\Delta_1) A(\Delta_2) = \boxed{ }$$

3) \triangle LMN \sim \triangle PQR, 9 x A(\triangle PQR) = 16 x A(\triangle LMN). If QR = 20 then find MN.

$$9 \times A (\Delta PQR) = \sum x A(\Delta LMN) \dots (Given)$$

$$\therefore \frac{9}{16} = \frac{A(\Delta LMN)}{A(\Delta \Box)}$$

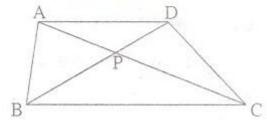
i.e.
$$\frac{A(\Delta LMN)}{A(\Delta POR)} = \frac{\Box}{16}$$
 (i)

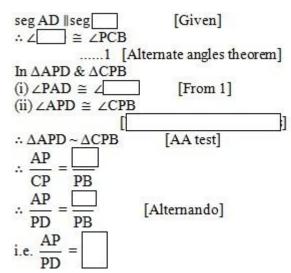
In ΔLMN and ΔPQR,(Given)

$$\frac{A(\Delta L\,MN)}{A(\Delta PQR)} = \frac{MN^2}{QR^2} \qquad \label{eq:alpha}$$
 (Theorem on

areas of similar triangles)

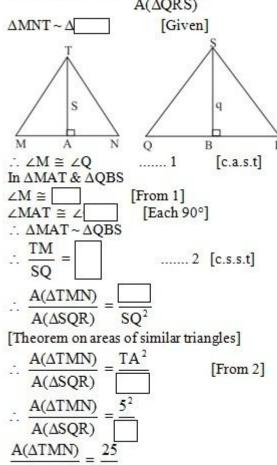
$$\therefore \boxed{} = \frac{MN^2}{20^2}$$


$$\therefore = \frac{MN}{20} \quad \dots \text{ (Taking square roots)}$$


$$\therefore$$
 MN = $\frac{3 \text{ x}}{}$

4) In

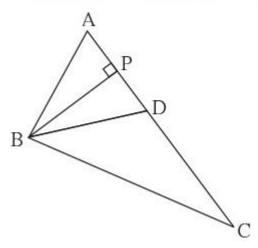
ABCD, seg AD # seg BC. Diagonal AC and diagonal BD intersect each other in point P. Then


show that
$$\frac{AP}{PD} = \frac{PC}{BP}$$

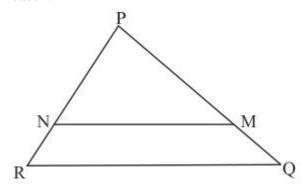
5) Δ MNT ~ Δ QRS. Length of altitude drawn from point T is 5 and length of altitude drawn from point

S is 9. Find the ratio $\frac{A(\Delta MNT)}{A(\Delta ORS)}$

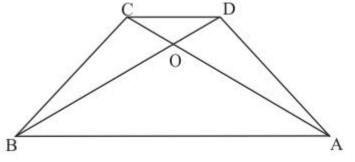
Q.6 Solve the following questions


 $A(\Delta SQR)$

1) In \triangle ABC point \triangle on side BC is such that DC = 6, BC = 15. Find A(\triangle ABD) : A(\triangle ABC) and A(\triangle ABD) : A(\triangle ADC) .


15

2) In below figure in \triangle ABC, point D is on side AC. If AC = 16, DC = 9 and BP \perp AC, then find the following ratios.


 $(i) \ \frac{A(\Delta \ ABD)}{A(\Delta \ ABC)} \quad (ii) \ \frac{A(\Delta \ BDC)}{A(\Delta \ ABC)} \quad (iii) \ \frac{A(\Delta \ ABD)}{A(\Delta \ BDC)}$

- 3) If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the sides in the same proportion.
- 4) In $\triangle PQR$, PM = 15, PQ = 25, PR = 20, NR = 8. State whether line NM is parallel to side RQ. Give reason.

5) In trapezium ABCD, side AB ||side DC, diagonals AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15 then find OD.

----- All the Best -----