Gurukul Coaching Classes

Weekly Test [MODEL ANSWER]

Std: SSC (B) Subject: Mathematics II Time: 2Hrs
Date: 12/May/2019 ch-1 Max Marks: 40

Q.1 Solve the following questions (9th std) (ANY FOUR)

1

- **1**) Ans. 60°
- 2) Ans. 70°

1) Ans.

- 3) Ans. $2 \sin 30^{\circ} + \cos 0^{\circ} + 3 \sin 90^{\circ} = 1 + 1 + 3$ $\therefore 2\sin 30^{\circ} + \cos 0^{\circ} + 3 \sin 90^{\circ} = 5$
- **4)** Ans. The intersection of ray SP and ray ST is point S.
- 5) Ans. If a quadrilateral is parallelogram then it opposite angles are congruent.
- 6) Ans. Ray ST and ray SR.

Q.2 Solve the following questions (9th std) (ANY TWO)

Given : □PQRS is a parallelogram. Diagonals PR

and QS intersect in point O.

To prove : $seg PO \cong seg RO$, $seg SO \cong seg QO$.

Proof : In $\triangle POS$ and $\triangle ROQ$

∠OPS ≅ ∠ORQ alternate angles

side PS ≅ side RQ opposite sides of parallelogram

∠PSO ≅ ∠RQO alternate angles

 $\triangle \Delta POS \cong \Delta ROQ \dots ASA \text{ test}$

2) Ans. d(U,A) = 215; d(V,A) = 140; d(U,V) = 75

$$d(U,V) + d(V,A) = 75 + 140 = 215;$$
 $d(U,A) = 215$

$$\therefore d(U,A) = d(U,V) + d(V,A)$$

.. The city V is between the cities U and A.

3) Ans.

□PQRS is a parallelogram.

$$\therefore \angle Q + \angle P = 180^{\circ}$$
 interior angles are

$$\therefore 50^{\circ} + \angle P = 180^{\circ}$$

supplementary.

$$\therefore \angle P = 180^{\circ} - 50^{\circ} = 130^{\circ}$$

Now , $\angle P = \angle R$ and $\angle Q = \angle S$ opposite angles of a parallelogram.

$$\therefore$$
 $\angle R = 130^{\circ}$ and $\angle S = 50^{\circ}$

Similarly, PS = QR and PQ = SRopposite sides of a parallelogram.

Q.3 Choose the correct alternative:

1) Ans. (d)

We know if sides of two similar triangles are in ratio a:b then area of these triangles are in ratio a²b² According to question, ratio of sides= 4:9

Hence ratio of areas = 4²:9²

So, the correct option is (d).

5

2) Ans. (c)

 \triangle ABC and \triangle BDE are equilateral triangles and D is the mid-point of BC

∴ ΔABC and ΔBDE are both equilateral triangles

.. They are similar also

$$\therefore \frac{\text{area of } \Delta ABC}{\text{area of } \Delta BDE} = \frac{BC^2}{BD^2} = \frac{BC^2}{\left(\frac{1}{2}BC^2\right)}$$

{D is mid point of BC}

$$= \frac{BC^2}{\frac{1}{4}BC^2} = \frac{4BC^2}{BC^2} = \frac{4}{1}$$

.: Ratio is 4:1 (c)

3) Ans. (b)

$$AB = 3$$
 cm, $BC = 2$ cm, $CA = 2.5$ cm, $EF = 4$ cm

∴ As are similar

$$\frac{DE}{AB} = \frac{EF}{BC} = \frac{FD}{CA}$$

$$\Rightarrow \frac{DE}{3} = \frac{4}{2} = \frac{FD}{2.5}$$

Now
$$\frac{DE}{3} = \frac{4}{2}$$

$$\Rightarrow$$
 DE $\frac{3\times4}{2}$ = 6 cm

and FD =
$$\frac{4}{2}$$
 \Rightarrow FD = $\frac{4 \times 2.5}{2}$ = 5 cm

$$= 6 + 4 + 5 = 15$$
 cm (b)

4) Ans. (c)

Let length of pole AB = 6 m and of pole CD = 11 m and distance between their foot = 12 m i.e., BD = 12 m

From A, draw AE || BD, then

$$AE = BD = 12 \text{ m}$$

$$ED = AB = 6 \text{ m} \text{ and } CE = 11 - 6 = 5 \text{ m}$$

Now in right ΔAEC

$$AC^2 = AE^2 + CE^2$$

$$=(12)^2+(5)^2=144+25=169=(13)^2$$

Hence distance between their tops = 13 m (c)

5) Ans. (b)

In $\triangle ABC$, AD is the bisector of $\angle BAC$ AB = 6 cm, AC = 5 cm, BD = 3 cm

Let DC = x

In AABC

∴ AD is the bisector of ∠A

$$\therefore \frac{AB}{AC} = \frac{BD}{DC} \Rightarrow \frac{6}{5} = \frac{3}{x}$$

$$\Rightarrow x = \frac{3 \times 5}{6} = \frac{5}{2} = 2.5$$

 $\therefore DC = 2.5 \text{ cm}$ (b)

1) Ans. Let first triangle be Δ_1 , its base & height be b_1

& h_1 respectively. Let second triangle be Δ_2 ,

its base & height be b_2 & h_2 respectively. $B_1 = 9$, $h_1 = 5$, $b_2 = 10$ & $h_2 = 6$ [Given]

$$\frac{A(\Delta_1)}{A(\Delta_2)} = \frac{b_1 \times h_1}{b_2 \times h_2}$$

[Property of ratio areas of two triangles]

$$=\frac{9\times5}{10\times6}$$

$$\therefore \frac{A(\Delta_1)}{A(\Delta_2)} = \frac{3}{4}$$

i.e. $A(\Delta_1): A(\Delta_2) = 3:4$.

2) Ans. $\frac{A(\Delta ABC)}{A(\Delta ADB)} = \frac{BC}{AD}$

[Triangles with common base]

$$\frac{A(\Delta ABC)}{A(\Delta ADB)} = \frac{4}{8}$$

$$\therefore \frac{A(\Delta ABC)}{A(\Delta ADB)} = \frac{1}{2}$$

3) Ans. In figure line l interesects the side AB and side AC of Δ ABC in the points P and Q respectively and $\frac{AP}{PB} = \frac{AQ}{OC}$, hence line $l \parallel \text{seg BC}$.

This theorem can be proved by indirect method.

Q.5 Complete the following Activities (ANY FOUR)

1) Ans. In ∆ABC, ray BD bisects ∠ABC [Given]

..... 4 [From 2 & 4] BC BE [From 1 & 4]

∴ seg ED || side BC [Converse of B.P.T.]

2) Ans. Let Δ_1 and Δ_2 be two similar triangles with their corresponding sides s1 and s2 respectively.

[Given] [Given] $\Delta_1 \sim \Delta_2$

[Theorem on areas of similar triangles]

[From 1] $\therefore A(\Delta_1) A(\Delta_2) = 9:25$

3) Ans.
$$9 \times A (\Delta PQR) = 16 \times A(\Delta LMN)$$
 (Given)
$$\frac{9}{16} = \frac{A(\Delta LMN)}{A(\Delta PQR)}$$
i.e. $\frac{A(\Delta LMN)}{A(\Delta PQR)} = \frac{9}{16}$ (i)
In ΔLMN and ΔPQR , (Given)
$$\frac{A(\Delta LMN)}{A(\Delta PQR)} = \frac{MN^2}{QR^2}$$
 (Theorem on areas of similar triangles)
$$\frac{9}{16} = \frac{MN^2}{20^2}$$

$$\frac{3}{4} = \frac{MN}{20}$$
 (Taking square roots)
$$\frac{3}{4} = \frac{MN}{20}$$
 (Taking square roots)
$$\frac{MN}{4} = \frac{15}{20^2}$$

$$\frac{MN}{$$

In AMAT & AQBS

$$\angle M \cong \angle Q$$
 $\angle MAT \cong \angle QBS$

$$\therefore \Delta MAT \sim \Delta QBS$$

$$\therefore \frac{TM}{SQ} = \frac{TA}{SB}$$

$$\therefore \frac{A(\Delta TMN)}{A(\Delta SQR)} = \frac{TM^2}{SQ^2}$$

[Theorem on areas of similar triangles]

$$\therefore \frac{A(\Delta TMN)}{A(\Delta SQR)} = \frac{TA^2}{SB^2}$$

$$\therefore \frac{A(\Delta TMN)}{A(\Delta SQR)} = \frac{5^2}{9^2}$$

$$\frac{A(\Delta TMN)}{A(\Delta SQR)} = \frac{25}{81}$$

Solve the following questions **Q.6**

1) Ans. : Point A is common vertex of Δ ABD, Δ ADC and Δ ABC and their bases are collinear. Hence, heights of these three triangles are equal

$$\frac{A(\Delta ABD)}{A(\Delta ABC)} = \frac{BD}{BC}$$
 heights equal, hence areas proportional to bases.

$$= \frac{9}{15} = \frac{3}{5}$$

$$\frac{A(\Delta ABD)}{A(\Delta ADC)} = \frac{BD}{DC}$$
 heights equal, hence areas proportional to bases.

$$= \frac{9}{6} = \frac{3}{2}$$

15

2) Ans.: In Δ ABC point P and D are on side AC, hence B is common vertex of Δ ABD, Δ BDC, Δ ABC and Δ APB and their sides AD, DC, AC and AP are collinear. Heights of all the triangles are equal. Hence, areas of these triangles are proportinal to their bases. AC = 16, DC = 9

∴ AD = 16 - 9 = 7
∴
$$\frac{A(\Delta ABD)}{A(\Delta ABC)} = \frac{AD}{AC} = \frac{7}{16}$$
 triangles having equal heights $\frac{A(\Delta BDC)}{A(\Delta ABC)} = \frac{DC}{AC} = \frac{9}{16}$ triangles having equal heights $\frac{A(\Delta ABD)}{A(\Delta BDC)} = \frac{AD}{DC} = \frac{7}{9}$ triangles having equal heights

3) Ans. Given : In \triangle ABC line $l \parallel$ line BC and line l intersects AB and AC in point P and Q respectively

To prove :
$$\frac{AP}{PB} = \frac{AQ}{QC}$$

Construction: Draw seg PC and seg BQ

Proof: Δ APQ and Δ PQB have equal heights.

seg PQ is common base of Δ PQB and Δ PQC, seg PQ \parallel seg BC, hence Δ PQB and Δ PQC have equal heights.

4) Ans.
$$PQ = PM + MQ [P-M-Q]$$

$$\therefore 25 = 15 + MO$$

$$\therefore$$
 MQ = 25 - 15 = 10

$$PR = PN + NR[P - N - R]$$

$$\therefore 20 = PN + 8$$

$$\therefore PN = 20 - 8 = 12$$

$$\frac{PM}{MQ} = \frac{15}{10} = \frac{3}{2} \qquad1$$

$$\frac{PN}{NR} = \frac{12}{8} = \frac{3}{2} \qquad2$$

In
$$\triangle PRQ$$
, $\frac{PM}{MQ} = \frac{PN}{NR}$ [From 1 & 2]

:. Seg NM is parallel to side QR

[Converse of B.P.T]

5) Ans. Side AB ||side CD | [Given]

∴ ∠OAB ≅ ∠OCD

..... [Alternate angles theorem]

In $\triangle AOB$ and $\triangle COD$

(i) ∠AOB ≅ ∠COD

[Vertically opposite angles]

(ii) ∠OAB ≅ ∠OCD

[From 1] [AA test]

∴ ∆AOB ~ ∆COD

$$\therefore \frac{AB}{DC} = \frac{OB}{OD}$$

[c.s.s.t]

$$\therefore \frac{DC}{6} = \frac{OD}{OD}$$

$$\therefore OD = \frac{15 \times 6}{20}$$

$$\therefore OD = 4.5 \text{ units}$$